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ABSTRACT
This paper aims to model the returns on a financial asset with volatilities expressed
through a Gaussian process. This approach avoids a rigid structure for the func-
tional form (over time) of volatility. Inference about the unknown quantities of the
models is made under a Bayesian approach with the application of numerical meth-
ods such as Gibbs sampling and particle filter. Although the model is defined with
a Markovian structure, with the introduction of the Gaussian process, there is a
dependence between the states in the unconditional distributions. The state prior
is complicated, so to approximate it and speed up the estimation process, a data
window is proposed. In the applications, a small Monte Carlo study is presented
to evaluate the estimation process and compare performance with other models, as
well as with real data.
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1. Introduction

In the finance literature, the importance of quantifying volatility has progressively
increased since Engle [7]. The term volatility has been used in different contexts such
as current, historical, realized, implied, and future volatilities. The estimation of his-
torical volatility is the focus of this paper.

The difference between volatility and other variables, such as the price of an asset
or a country’s inflation, is that this variable is generally not observed. Therefore, in
this paper, its estimation is done through statistical models, exploring its relationship
with other variables, specifically the asset return.

Engle [7] explores the relationship between volatility and return through an autore-
gressive form, where the return has its variance (normal) distribution varying over
time, and the variance depends on lagged terms of the return itself. Since then, other
models have been developed, such as the classic GARCH described in Bollerslev [3],
where volatility depends on lagged values of the return and its own lagged volatility
values.

Subsequently, the use of probability distributions to model volatility was researched,
resulting in stochastic volatility models. In the class of state-space models, these mod-
els involve a latent stochastic variable (unobserved) that changes over time and influ-
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ences the observed variable. A common approach in the use of stochastic volatility is
when the log of variance follows an autoregressive model [13].

The existence of a temporal relationship between volatility values is largely due to
the empirically observed phenomenon known as volatility clustering. This term was
first discussed by Mandelbrot [15]. The use of dependence on current volatility values
with past volatility and past squared log returns is largely due to this phenomenon.

Another widely discussed phenomenon in quantitative finance literature is the so-
called leverage effect, first discussed by Black [2], as the negative correlation between
past return values and future volatility values. Thus, during a crisis, it is unclear in
the subsequent moment what the fair price of the asset should be.

An established fact in stochastic volatility models is that logarithmic returns gen-
erally exhibit heavy-tailed distributions. Nevertheless, many models use the normal
distribution as part of their specification. However, this does not diminish the es-
timation process because this normal distribution is typically combined with other
structures that account for the heavy-tail effect in log returns [5].

Wu et al. [23] propose a volatility model through a Gaussian process [19] in which
the normal covariance matrix is set through a covariance function, also known as a
kernel. This approach has usually the advantage of being a smooth function from the
past to the new volatility values. This paper builds on this idea and introduces a novel
approach using a distribution in the function space for volatility. This approach offers
great flexibility in estimating this variable.

Moreover, we employ a particle Markov chain Monte Carlo (PMCMC) algorithm
[1] called particle Gibbs with ancestor sampling (PGAS), proposed by Lindsten et al.
[14]. These algorithms handle the posterior distribution of static parameters through
standard MCMC methods and manage the posterior of latent variables using sequen-
tial Monte Carlo sampling, also known as particle filtering. Particle filtering involves
simulating a certain number N of samples for each time t of the state variable. As in
Pitt et al. [17], notice that increasing the number of particles enhances the acceptance
rate of PMCMC sampling, albeit at a higher computational cost.

The remainder of this paper is structured as follows: Section 2 briefly discusses a few
volatility models and introduces our proposed approach to modelling volatility. The
development of inference and algorithm to deal with the stochastic volatility model
via Gaussian process is given in Section 3 by applying the Bayesian inference through
particle Gibbs with ancestor sampling. Section 4 brings a small Monte Carlo study
and real data applications. Section 5 concludes.

2. Modelling volatility

Most financial studies concentrate on analysing return series rather than using asset
price series. The preference for return series stems from two factors: returns provide
information relevant to investors’ interests and exhibit more statistically intriguing
properties compared to price series. Therefore, if Pt represents the price of an asset
at time t, the log-return at time t is defined as: yt = log(Pt)− log(Pt−1).

2.1. GARCH model

A generalized autoregressive conditionally heteroscedastic (GARCH) model [3] is used
- for comparisons - to model the variance of a time series using values of the past
squared means of the observations and past variances. The GARCH model is given
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by

yt ∼ N (0, σ2
t ) and σ2

t = α0 +

q∑
i=1

αiy
2
t−i +

p∑
j=1

βjσ
2
t−j ,

where N stands for normal distribution, α0 > 0, αi ⩾ 0, βj ⩾ 0, ∀i, j, respectively.
Other restrictions may be applied in the classical maximum likelihood estimation
process used in this paper. See Francq and Zakoian [8] for more details. The model
can be generalized with an autoregressive moving average structure on the mean.

2.2. Stochastic volatility model

First, a state space model can be described with an observation distribution given by
p(yt|xt; θ) and a system distribution given by p(xt|xt−1; θ), both for t = 1, . . . , n, where
θ and p(.) denote a parameter vector and general probability (density) functions,
respectively. The initial state x0 is distributed according to p(x0|θ). See West and
Harrison [22] for more details.

The observation and system equations of the stochastic volatility (SV) model is
given by [13]:

yt = ext/2ϵt

xt = α+ ϕ(xt−1 − α) + ωt.

We consider that ϵt and ωt are independent, with ϵt ∼ N (0, 1) and ωt ∼ N (0, τ 2). The
SV model is used for comparisons and as the base for our main model in the following.

To complete our Bayesian model specification, we assume the following prior distri-
bution: τ 2 ∼ IG(a1, b1), ϕ ∼ Beta(a2, b2), α ∼ N (a3, b

2
3), and x0 ∼ N (α, τ 2/(1+ϕ2)),

where IG(a1, b1) is the inverse-gamma distribution with a1 and b1 as shape and scale
parameters; and Beta(a2, b2) is the beta distribution with mean a2/(a2 + b2).

2.3. Stochastic volatility model via Gaussian process

Gaussian process is a generalization of the Gaussian probability distribution. Whilst
a probability distribution is associated with a random variable, which can be a scalar
or a vector, the Gaussian process is associated with an object that resides in the space
of functions. Formally, Gaussian process is a collection of random variables, such that
any finite number of these variables has a joint multivariate normal distribution [19].

A Gaussian process is completely determined by its mean and covariance functions.
If f(x) follows a Gaussian process (GP), then

f(x) ∼ GP(m(x), κ(x, x′)),

where m(x) is the mean function and κ(x, x′) is the covariance function, with x and
x′ being input data. There are several covariance functions such as the squared expo-
nential, the γ-exponential, the rational quadratic and the periodic [19].
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Our proposed stochastic volatility model via Gaussian process is given by

yt = ext/2ϵt, (1)

xt = f(xt−1|yt−1) + ωt, (2)

where ϵt and ωt are again independent, with ϵt ∼ N (0, 1) and ωt ∼ N (0, τ 2). The state
variable of the model xt represents the log volatility. A Gaussian process distribution
is proposed for the function f(·|yt−1) to enhance its modelling flexibility: f(x|yt−1) ∼
GP(m(xt), κ(xt, xt−s)). In contrast to Wu et al. [23], we marginalize f(x|yt−1) at the
posterior distribution to deal better with the inference process through numerical
methods.

We consider the mean function as m(xt) = axt−1+ byt−1, where a and b are param-
eters to be estimated. Note that despite the rigid structure of the mean function, the
covariance function has the potential to capture complex patterns according to the
observed data. The parameter b captures the leverage effect of the time series.

Moreover, we model the covariance structure through a quadratic kernel as a func-
tion of the temporal distance between volatilities. Therefore, let κ(xt, xt−s), where
t > s, be the covariance function evaluated between variables xt and xt−s. This func-
tion is given by

κ(xt, xt−s) = h2 exp

(
s2

ℓ2

)
, (3)

where h2 and ℓ2 are parameters that determine the scale of the log volatility and how
much one point influences another, respectively.

Hence, the model has a set of (static) parameters θ = (a, b, h2, ℓ2, τ 2). These param-
eters, together with the log volatility values xt, t = 1, 2, . . . , n, form the set of variables
under which Bayesian inference is developed. Next, we deal with the development of
inference and the algorithm dealing with the stochastic volatility model via Gaussian
process.

3. Bayesian inference through particle Gibbs with ancestor sampling

In the stochastic volatility model via Gaussian process, directly learning from the
posterior of all unknown variables, (f, x1:n, θ), is a highly complex task since x1:n =
(x1, x2, . . . , xn) are unobserved. Moreover, the posterior distribution has a known but
non-standard form. Thus, we resort to numerical algorithms such as particle Gibbs
with ancestor sampling [14] to obtain a sample from the posterior distribution of
(f, x1:n, θ) and, consequently, facilitates the inference.

From Equations (1) and (2), the posterior distribution can be represented as

p(x1:n, θ|y1:n) ∝ p(y1:n|x1:n, θ)p(x1:n|θ)p(θ),

where p(θ) is the prior distribution (given in the applications) and the likelihood is
given by

p(y1:n|x1:n, θ) =
n∏

t=1

p(yt|xt) with (yt|xt) ∼ N (0, exp(xt)),
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and y1:n = (y1, y2, . . . , yn).
The latent state prior - with θ known and f marginalized - p(x1:n|θ) is obtained

through the product of predictive distributions of a Gaussian process, as discussed in
Frigola et al. [9]. Thus, defining Σt,s = k(xt, xt−s) and mt = m(xt), the prior p(x1:n|θ)
takes the following form:

p(x1:n|θ) = p(x1|θ)
n∏

t=2

p(xt|θ, x1:t−1, y1:t−1) with (4)

(xt|θ, x1:t−1, y1:t−1) ∼ N (xt|µt(x1:t−1, y1:t−1),Ωt(x1:t−1))

µt(x1:t−1, y1:t−1) = mt−1 +Σt−1,1:t−2Σ̃
−1
1:t−2,1:t−2(x1:t−1 −m1:t−2),

Ωt(x1:t−1) = Σ̃t−1,t−1 − Σt−1,1:t−2Σ̃
−1
1:t−2,1:t−2Σ

⊤
t−1,t−2,

with m1:t = (m1,m2, . . . ,mt). Note that the prior distribution of xt depends on all
preceding states x1:t−1 and preceding observations y1:t−1 [23].

The particle Gibbs with ancestor sampling is an algorithm described by Lindsten
et al. [14] which is in the class of particle Markov chain Monte Carlo methods [1].
It combines concepts from Markov chain Monte Carlo and particle filtering. Conse-
quently, it enables inference for both the parameters and the states of a state-space
model.

3.1. Standard Particle Filters

In the state space model described in Section 2.2 - with p(yt|xt; θ), p(xt|xt−1; θ), and
p(x0|θ) being the observation, the system and the prior distributions, we need to solve
the following integral at time t:

p(xt|y1:t−1; θ) =

∫
p(xt|xt−1; θ)p(xt−1|y1:t−1; θ)dxt−1, (5)

and use the result to update the posterior distribution at time t, that is,

p(xt|y1:t; θ) =
p(yt|xt; θ)p(xt|y1:t−1; θ)

p(yt|y1:t−1; θ)
, and (6)

p(yt|y1:t−1; θ) =

∫
p(yt|xt; θ)p(xt|y1:t−1; θ)dxt. (7)

Except in a few cases such as linear Gaussian models [22], the integrals given in
Equations (5)–(7) are in general hard to solve, as is in our model. To address this
problem, the standard particle filter can be used to approximate these distributions.

The standard particle filter, also known as the sequential importance resampling
(SIR) method, was proposed by Gordon et al. [10]. Suppose that we have a sample

x
(ℓ)
t−1, ℓ = 1, . . . , L with probabilities π

(ℓ)
t−1 from p(xt−1|y1:t−1; θ). It is easy to notice

that the simplest values of π
(ℓ)
t−1 are 1/L. An approximation to Equation (5) is given

by:

p(xt|y1:t−1; θ) ≈
L∑

ℓ=1

p(xt|x(ℓ)
t−1; θ)π

(ℓ)
t−1. (8)
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For that reason, p(xt|y1:t−1; θ) can be viewed as a mixture density with L compo-

nents where p(xt|x(ℓ)
t−1; θ) represents the system equation conditional at each particle

x
(ℓ)
t−1. That would give us a sample x̃

(ℓ)
t , ℓ = 1, . . . , L, from the density p(xt|y1:t−1; θ).

Now, we can update the posterior distribution using Equation (6). We obtain a sample

x̃
(ℓ)
t , ℓ = 1, . . . , L from p(xt|y1:t; θ) by assigning a probability of

π̃
(ℓ)
t =

p(yt|x̃(ℓ)
t ; θ)π

(ℓ)
t−1∑L

j=1 p(yt|x̃
(j)
t ; θ)π

(j)
t−1

(9)

to x̃
(ℓ)
t . Thus, we have a sample x̃

(ℓ)
t , ℓ = 1, . . . , L with probabilities π̃

(ℓ)
t from

p(xt|y1:t; θ). Finally, we resample L values (with replacement) from the particles x̃
(ℓ)
t

with weights π̃
(ℓ)
t to obtain a sample from p(xt|y1:t; θ), then restarts the procedure for

time t+ 1.

3.2. Particle Gibbs with ancestor sampling

Now, particle filter and Gibbs sampling can be combined into an appropriate algorithm
called the particle Gibbs with ancestor sampling [14]. Nevertheless, the computational
cost of the particle Gibbs with ancestor sampling (PGAS) is O(NMn5), where N is
the number of particles, M is the number of PGAS iterations, and the term n5 comes
from the inversion of matrices of size t by t varying between 1 and n, which generates
a computational cost of O(n4). Additionally, the product of these terms is computed,
which has a computational cost of n. This computational cost could limit its use in
stochastic volatility models via Gaussian process, where the sample size n required for
parameter estimation is usually high. That being so, a technique described in Doucet
et al. [6] can be used, in which a data window is utilized to reduce the computational
cost of matrix inversion. In this way, the factor n3 can be reduced to J3, where J is
the window size and J ≪ n. Consequently, the cost is reduced to O(NMn2J3).

To sample from the posterior distribution of the parameters p(θ|x1:n, y1:n), which
is Step (a) of PGAS, a Metropolis-Hastings [12, 16] algorithm is used. The proposed
distribution is a random walk where the order of magnitude of the variance is calcu-
lated following the idea of Braak [4] with Σ̃ = 2.382/d × ṽar(θ). Here, d = 5 is the
dimension of the parameter vector and ṽar(θ) is an estimate of the posterior vari-
ance of θ. It follows that Step (b) of PGAS consists of sampling from the states,
p(x1:n|θ, y1:n), via SIR given in Section 3.1 by selecting one of the trajectories based
on πj

n, for j = 1, 2, . . . , L.

4. Applications

In this section, we present a small Monte Carlo study and two real data applications
with Brazilian companies in the BOVESPA stock exchange. All computations were
carried out using R software [18] for fitting the GARCH model and running the PGAS
of the stochastic volatility model via Gaussian process, whilst OpenBUGS [20] for
running the MCMC of the classical stochastic volatility model.

6
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4.1. Monte Carlo study

In this section, we conduct a small Monte Carlo study using 20 replicas for two sets
of parameters and two different sample sizes, n = {100, 200}. For each possibility, the
PGAS algorithm was executed twice (in parallel) for 5,000 iterations, with a burn-in
period of 1,000 iterations and kept 1 from every 4 draws (a posterior sample size of
2,000 observations). A window size (J) of 10 data points was utilized. The objective
of the Monte Carlo study presented in this section is to empirically evaluate the
methodology adopted from the literature and outlined in Section 3. The stochastic
volatility model via Gaussian process has its parameters and state variables inferred
through the PGAS algorithm described in Sections 3.1 and 3.2.

The evaluation focus on the consistency of point estimates and the level of cred-
ibility of interval estimates for the model parameters. Thus, our results include the
mean of means and the median of medians, accompanied by their respective standard
deviations, as well as the 2.5% and 97.5% percentiles based on the 20 replicas.

The covariance function used is the squared exponential for two reasons: firstly,
as noted by Rasmussen and Williams [19], this kernel adapts well to functions with
complex shapes; secondly, it offers an intuitive interpretation of its parameters, (h2,ℓ2).
Whilst other kernels with long-term structures could be considered for future work,
they are not explored here.

To complete our Bayesian model specification, we set the following prior distribu-
tions: a ∼ N (0; 3), b ∼ N (0; 3), h2 ∼ G(1/40; 1/20), ℓ2 ∼ G(256/100; 16/100) and
τ 2 ∼ G(1/40; 1/20), where G(a, b) is the gamma distribution with mean a/b.

Table 1. Summary results of a Monte Carlo study with 20 replicas for two sets of parameters and two different

sample sizes, n = {100, 200}. PGAS was run for 5,000 iterations and the burn-in period used was 1,000 iterations.

A window size of 10 data points was employed. We report the mean of means and the median of medians, along

with standard deviations and the 2.5% and 97.5% percentiles bases on the 20 replicas.

Parameter True Mean Median Std.Dev 2, 5% 97, 5%

n = 100

a 0.2 0.080 0.099 0.151 -0.208 0.390
b -0.2 -0.155 -0.181 0.057 -0.268 -0.041
h2 10 12.802 11.988 3.972 6.380 22.094
ℓ2 30 23.101 21.115 8.768 9.900 43.675
τ2 5 8.985 7.579 4.128 3.585 19.290
a 0.5 0.291 0.342 0.173 -0.070 0.601
b 0.3 0.254 0.269 0.078 0.097 0.404
h2 5 8.033 7.432 3.276 3.653 16.377
ℓ2 13 15.139 14.739 8.611 3.043 36.271
τ2 10 16.774 13.791 10.895 3.603 45.736

n = 200
a 0.2 0.080 0.099 0.115 -0.208 0.390
b -0.2 -0.155 -0.181 0.044 -0.268 -0.041
h2 10 12.802 11.988 2.911 6.380 22.094
ℓ2 30 23.101 21.115 8.091 9.900 43.675
τ2 5 8.985 7.579 3.626 3.585 19.290

a 0.5 0.285 0.309 0.132 0.017 0.532
b 0.3 0.243 0.252 0.061 0.121 0.361
h2 5 8.256 7.088 2.401 4.552 13.737
ℓ2 13 16.523 14.739 7.946 5.268 36.037
τ2 10 19.138 13.791 9.571 6.270 42.246
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Table 1 shows the summary results of our Monte Carlo study. By visual inspec-
tion of trace plots, convergence was reached quickly for posteriors of each dataset,
although they showed high correlated samples for some parameters. Given the stan-
dard deviation, the mean of means and the median of medians are relatively close to
the true values of the parameters. Moreover, the 2.5% and 97.5% percentiles include
the true values of the parameters, nevertheless the intervals may seem large due to the
small sample sizes of our artificial data. Furthermore, when the sample size increases
from 100 to 200, the overall standard deviations decrease, showing consistency of the
proposed model. Despite of being a small Monte Carlo, we believe that the results are
satisfactory and encouraging. Thus, we proceed with our real data applications in the
following.

4.2. Real data applications

The objective of this section is to compare our proposed stochastic volatility model via
Gaussian process given in Section 2.3 with the GARCH model and with the stochastic
volatility model presented in Sections 2.1 and 2.2, respectively. Our comparisons are
based on the L1 and L2 losses [11] defined as follows:

L1 =
n∑

t=1

∣∣∣σ̂2
t − y2t

∣∣∣ and L2 =
n∑

t=1

(
σ̂2
t − y2t

)2
. (10)

Note that y2t is used as a proxy of the conditional variance whilst σ̂2
t comes from each

fitted model. An approximation of E(exp(xt)|y1:n), from a sample from the posterior
distribution, is used for σ̂2

t for the stochastic volatility models.
The data consists of the returns from Eletrobras and Petrobras stocks - two Brazil-

ian companies - traded on BOVESPA1. Both series were collected from the Yahoo
Finance website2, containing data on the assets for the period between 2012/09/04
and 2016/08/24. Figures 1 and 2 show the price and return series for Eletrobras and
Petrobras from September 4, 2012, to August 24, 2016, respectively.
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Figure 1. Price (left) and return (right) of Eletrobras stock traded on BOVESPA from 2012/09/04 to 2016/08/24.

The Ljung-Box test [see for example 21] applied to Eletrobras’ returns resulted in p-
values greater than or equal to 0.1 for degrees of freedom between 2 and 10. However,

1https://www.b3.com.br/en_us/

2https://finance.yahoo.com/
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Figure 2. Price (left) and return (right) of Petrobras stock traded on BOVESPA from 2012/09/04 to 2016/08/24.

the same test applied to squared returns yielded values below 0.01, indicating the
presence of heteroskedasticity and highlighting the need to model volatility.

The same test was conducted for Petrobras’ returns and their squares, with p-values
exceeding 0.2 for the former and very low values (below 10−5) for the latter. This also
suggests a requirement to model volatility.

In Table 2, it can be seen that both kurtoses of the unconditional log return dis-
tributions are greater than 3, which is a characteristic of a distribution with heavy
tails. Another relevant fact is that the skewness coefficients are positives and both
close to zero, indicating a slight right skew. Notwithstanding, this does not diminish
our modelling and fitting of the data because the hierarchical structure of our model
accounts for the heavy-tail effect in log returns [5].

Table 2. Summary statistics of Eletrobras and Petrobras stocks.

Stock Mean Standard Deviation Skewness Excess kurtosis

Eletrobras -0.00013 0.0367 0.2652 1.264

Petrobras -0.00097 0.0381 0.1585 1.870

For both datasets - Eletrobras and Petrobras - we ran the PGAS algorithm (see
Sections 3.1 and 3.2) twice in parallel for 20,000 iterations and discarded the first
10,000 draws from each chain. A window size (J) of 10 data points was used to
estimate the states. The convergence of the chains was again checked by visually
inspecting the trace plots of all parameters. Table 3 brings model comparison by
means of L1 and L2 losses. For theses datasets, our proposed stochastic volatility model
via Gaussian process outperforms both GARCH and stochastic volatility models. As

Table 3. Model comparisons by means of L1 and L2 losses.

Eletrobras Petrobras
Model

L1 L2 L1 L2

GP Vol. 0.90 0.002 0.87 0.002

GARCH 1.40 0.006 1.50 0.007

SV 1.30 0.005 1.20 0.007

9
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said before, our proposed model seems more flexible than the other two models in
this paper even with just using the quadratic kernel. Figures 3 and 4 depict the
marginal posterior distributions for a, b, ℓ2, h2 and τ 2 for the Eletrobras and Petrobras
datasets, respectively. Note that a is close to 1 for both datasets, indicating persistent
volatilities, whilst b is around zero, suggesting almost no leverage effect. Additionally,
both ℓ2 and h2 are in the same range for both datasets, respectively.

Figure 3. Summary of the posterior distribution for the stochastic volatility model via Gaussian process applied

to Eletrobras returns

Figure 4. Summary of the posterior distribution for the stochastic volatility model via Gaussian process applied

to Petrobras returns

Furthermore, Figure 5 illustrates the estimated posterior distributions of volatilities
for both Eletrobras and Petrobras. When analyzed jointly with Figures 1 and 2, it
can be observed that our proposed stochastic volatility model via Gaussian process
effectively captures the key features of market volatility over time.

5. Concluding remarks

This paper develops Bayesian inference for the stochastic volatility model via Gaussian
process through a hybrid algorithm of particle filters and Gibbs sampling. By using
techniques to reduce computational complexity, the model achieves better results than
conventional volatility models.

10
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(a) ELETROBRAS (b) PETROBRAS

Figure 5. The estimated posterior distributions of volatilities for both Eletrobras and Petrobras. The black lines

represent squared returns, whilst the red shaded region indicates the 0.95 credible interval.

This paper provides a broader understanding of stochastic volatility models, Gaus-
sian processes, and the statistical modelling of financial assets. To reduce compu-
tational complexity, the first technique involved using a data window in both the
likelihood function and the particle filter. The second technique was to start with a
smaller sample to more quickly converge on the region with the highest probability
mass. This paper also demonstrates the effectiveness of the PGAS algorithm through
a Monte Carlo study, providing robust parameter estimations. It illustrates the ef-
ficiency of the stochastic volatility model using Gaussian processes by comparing it
with other widely used models.

The proposed model was tested in restricted scenarios, but this allows for a more
objective presentation of the idea. In the future, further comparisons and modifications
to the model may be made based on this paper.

For example, other covariance functions such as the quadratic rational function or
the Matérn function could be considered. Combinations of two or more covariance
functions could also be considered, such as their product or sum.

Finally, a modification to the model structure could be made by replacing the
stochastic volatility distribution. The most plausible modification would be to replace
the normal distribution with the Student’s t-distribution. This extension could, in
principle, be done via a mixture of scale (precision) of the normal distribution with
the gamma distribution. In this case, a heavy-tailed distribution for volatility would
be admitted.
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